top of page
neletenkeha

Animal Biotechnology By M M Ranga Free Download.35 BETTER: Discover the Latest Advances in Animal Bi



Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool.




Animal Biotechnology By M M Ranga Free Download.35 BETTER



The in vivo intestine contains, in addition to the epithelium, a complex immune and neural system. In the in vitro organoid system, this complex immune and neural system is lacking, which reduces its ability to study interactions between these (sub)systems. Co-culturing of organoids with immune or neural cells and providing tissue specific biochemical cues resembling the in vivo condition could in part enable the study of such interactions. However, co-culture of various cell types in an organoid system has not been reported for livestock and companion animals yet. Techniques such as 3D bioprinting (e.g. [38, 88]) for seeding culture devices may enable co-culturing of various cell types with defined spatial positioning to generate more complex organoid systems that may better mimic the in vivo host physiology.


Organoids can be important in vitro research tools, in fundamental, applied, or routine aspects of veterinary and animal production sciences and may complement and partly replace animal studies. This would require more research, especially regarding organoids of other organs, as the majority of studies have been on intestinal organoids. Organoids have distinctive advantages over other in vitro models, as they better recapitulate structure and function of tissues. Compared to intact organs they are strongly reduced models, which may be an advantage for studies on specific mechanisms, but also confers clear limitations to the model. Organoids thus provide a well-defined, accessible research model that may be used to obtain phenotypic information on defined underlying cellular and molecular aspects of important complex traits such as feed efficiency and disease resistance. Thus, organoids can be of great value in livestock and veterinary research.


Approximately 7,000 rare diseases affect millions of individuals in the United States. Although rare diseases taken together have an enormous impact, there is a significant gap between basic research and clinical interventions. Opportunities now exist to accelerate drug development for the treatment of rare diseases. Disease foundations and research centers worldwide focus on better understanding rare disorders. Here, the state-of-the-art drug discovery strategies for small molecules and biological approaches for orphan diseases are reviewed. Rare diseases are usually genetic diseases; hence, employing pharmacogenetics to develop treatments and using whole genome sequencing to identify the etiologies for such diseases are appropriate strategies to exploit. Beginning with high throughput screening of small molecules, the benefits and challenges of target-based and phenotypic screens are discussed. Explanations and examples of drug repurposing are given; drug repurposing as an approach to quickly move programs to clinical trials is evaluated. Consideration is given to the category of biologics which include gene therapy, recombinant proteins, and autologous transplants. Disease models, including animal models and induced pluripotent stem cells (iPSCs) derived from patients, are surveyed. Finally, the role of biomarkers in drug discovery and development, as well as clinical trials, is elucidated. 2017 Wiley Periodicals, Inc.


A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates


Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.


ABSTRACT Model systems, including laboratory animals, microorganisms, and cell- and tissue-based systems, are central to the discovery and development of new and better drugs for the treatment of human disease. In this issue, Disease Models & Mechanisms launches a Special Collection that illustrates the contribution of model systems to drug discovery and optimisation across multiple disease areas. This collection includes reviews, Editorials, interviews with leading scientists with a foot in both academia and industry, and original research articles reporting new and important insights into disease therapeutics. This Editorial provides a summary of the collection's current contents, highlighting the impact of multiple model systems in moving new discoveries from the laboratory bench to the patients' bedsides. PMID:26438689


Model systems, including laboratory animals, microorganisms, and cell- and tissue-based systems, are central to the discovery and development of new and better drugs for the treatment of human disease. In this issue, Disease Models & Mechanisms launches a Special Collection that illustrates the contribution of model systems to drug discovery and optimisation across multiple disease areas. This collection includes reviews, Editorials, interviews with leading scientists with a foot in both academia and industry, and original research articles reporting new and important insights into disease therapeutics. This Editorial provides a summary of the collection's current contents, highlighting the impact of multiple model systems in moving new discoveries from the laboratory bench to the patients' bedsides. 2015. Published by The Company of Biologists Ltd.


To combat neglected diseases, the Novartis Institute of Tropical Diseases (NITD) was founded in 2002 through private-public funding from Novartis and the Singapore Economic Development Board. One of NITD's missions is to develop antivirals for dengue virus (DENV), the most prevalent mosquito-borne viral pathogen. Neither vaccine nor antiviral is currently available for DENV. Here we review the progress in dengue drug discovery made at NITD as well as the major discoveries made by academia and other companies. Four strategies have been pursued to identify inhibitors of DENV through targeting both viral and host proteins: (i) HTS (high-throughput screening) using virus replication assays; (ii) HTS using viral enzyme assays; (iii) structure-based in silico docking and rational design; (iv) repurposing hepatitis C virus inhibitors for DENV. Along the developmental process from hit finding to clinical candidate, many inhibitors did not advance beyond the stage of hit-to-lead optimization, due to their poor selectivity, physiochemical or pharmacokinetic properties. Only a few compounds showed efficacy in the AG129 DENV mouse model. Two nucleoside analogs, NITD-008 and Balapiravir, entered preclinical animal safety study and clinic trial, but both were terminated due to toxicity and lack of potency, respectively. Celgosivir, a host alpha-glucosidase inhibitor, is currently under clinical trial; its clinical efficacy remains to be determined. The knowledge accumulated during the past decade has provided a better rationale for ongoing dengue drug discovery. Though challenging, we are optimistic that this continuous, concerted effort will lead to an effective dengue therapy. Copyright 2013 Elsevier B.V. All rights reserved. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


!
Widget Didn’t Load
Check your internet and refresh this page.
If that doesn’t work, contact us.
bottom of page